


Introduction

@ Let Aq,..., A, be indicator variables for bad events in an
experiment

@ Suppose P[A;] < p
o We want to avoid all the bad events

o If P[-A; A --+ A —Ap] >0, then there exists a way to
avoid all the bad events simultaneously

@ Suppose, the event A; is independent of all other events

@ Then, it is easy to see that:
P[-A1 A -+ A 2DAl 2 (1-p)">0

@ Lovasz Local Lemma will help us conclude the same even in
presence of “limited independence”
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The Statement

Theorem (Lovasz Local Lemma)

Let (A1,...,A,) be a set of bad event. For each A;, where i € [n],
we have P[A;] < p and each event A; depends on at most d other
bad events. If ep(d 4+ 1) < 1, then

1 n
Pl[-A1 A - AN DA (1 - — 0
[74 ] ( d+1> =

The condition is also stated sometimes as 4pd < 1, instead of
ep(d+1) <1
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Application: k-SAT

o Let ® be a k-SAT formula such that each variable occurs in at
most 2K=2 /k different clauses

o Experiment: X; be an independent uniform random variable
that assigns the variable x; a value from {true, false}

e Bad Event: For the j-th clause we have the bad event A; that
is the indicator variable for the bad event: The j-th clause is
not satisfied

@ Probability of Bad Event: For any j, note that

1

P[Aj] < ok

Because there is at most one assignment of variables to make
the clause false.
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Application: k-SAT

@ Dependence: Note that the j-th clause has k literals, and each
variable of the literal occurs in 2572 /k different clauses. So,
the clause A; can depend on at most d = 2k=2 different bad
events

@ Conclusion: Note that 4pd = 1, so Lovasz Local Lemma
implies that there exists an assignment that satisfies all the
clauses in the formula simultaneously

@ Observation: The probability p of each bad events does not
depend on the overall problem instant size (i.e., the number of
variables).
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Application: Vertex Coloring

@ Let G be a graph with degree at most A

@ Experiment: X, be the random variable that represents the
color of the vertex v. Let X, be a independent and uniformly
random over the set {1,...,C}

@ Bad Event: For every edge e, we have a bad event A, that is
the indicator variable for both its vertices receiving identical
color

o Probability of the Bad Event: Note that P[A.] = &

@ Dependence: Note that the event A, does not depend on any
other event A, if the edges do not share a vertex. So, the
event A, depends on at most 2(A — 1) other bad events

@ Conclusion: A valid coloring exists if 4pd < 1, i.e.,
C>8(A-1)
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Application: Vertex Coloring (Bad Bound)

@ Let G be a graph with degree at most A

@ Experiment: X, be the random variable that represents the
color of the vertex v. Let X, be a independent and uniformly
random over the set {1,...,C}

@ Bad Event: For every edge v, we have a bad event A, that is
the indicator variable for one of the neighbors of v receiving
the same color as v

o Probability of the Bad Event: Note that
A
PlA]<1— (1— %)
@ Dependence: Note that the event A, does not depend on any
other event A/ if {v} U N(v) does not intersect with

{v'} UN(V'). So, the event A, depends on at most
A+ A(A — 1) = A? other bad events

@ Conclusion: A valid coloring exists if 4pd < 1, i.e., C > 777

Lovasz Local Lemma



Proof of Lovasz Local Lemma

Let S C {1,...,n}, then we have:

P [A; /\_‘Ak L
kes

Assuming this claim, it is easy to prove the Lovasz Local Lemma.
n n

P /\ﬁA,- :H]P’ —A; /\ﬁAk
i=1

i=1 k<i

n 1 1 n
ST (- =) =(1-—=) >0
Hl< d+1> ( d+1>>

i=
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Proof of the Claim

We will proceed by induction on|S|

Base Case: If|S| = 0, then the claim holds, because:

1 < 1
e(d+1) ~d+1

P A | \ ~Ac| =PlA]<p<
keS

Assume that for all S|S| < t, the claim holds

We will prove the claim for|S| = t. Suppose D; be the set of
all j such that the bad event A; depends on the bad event A;

e Easy Case. Suppose SN D; = (). This case is easy, because

1 1
P 1A A | =PIA] < p< <
ke/\s k A< P< S Sara
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Proof of the Claim [

e Remaining Case. Suppose SN D; # 0.

P[A,- A —Ax IP’[A,- A A N\ A

keS keD; keS\D;

B P [Aia/\keD; —Ag ‘ Nkes\p, ﬁAk}
P [/\keD,- —Ay ’ /\keS\D,- ﬁAk}
P [Ai Nkes\p, ﬁAk}

TP {/\keD[ Ak ‘ Nkes\o, ﬂAk}
_ P[A]]
P [/\keD,— ~Ag ‘ Nkes\o; ﬁAk}
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Proof of the Claim [

@ Suppose D; = {i,..., iz}

@ Using chain rule, we can write the denominator

P /\ﬁAk /\ —Ay

keD; keS\D;

as follows

e (-4, | A A A A
(=1

keS\D; K/ €{it,emi—1}
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Proof of the Claim [V

@ Note that each probability term is condition on < t bad
events. So, we can apply the induction hypothesis. We get

z 1
P A - | A A >H(1d+1)

keD; keS\D; (=1

@ Now, let us return to our original expression

PlA | A A < P[A]
keS P [/\keD,— LY ’ /\kES\D,- ﬁAk}
1
<eP[A] < ——
PlAl< o7
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Proof of the Claim

@ This completes the proof by induction

@ We will prove a more general result in the next lecture
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